Znak liczby – relacja liczby rzeczywistej względem liczby 0.Liczba może mieć jeden z trzech znaków: dodatni (liczba większa od 0), zerowy, ujemny (liczba mniejsza od 0).
dratu o boku 1,1a jest równa 1,1·a √ 2. Jest to liczba o 10% większa od a √ 2. b) Pole kwadratu o boku a jest równe a2, a pole kwadratu o boku 1,1a jest równe (1,1a)2 =1,21·a2. Jest to liczba o 21% większa od a2. c) Obwód kwadratu o boku a jest równy 4a, a obwód kwadratu o boku 1,1a jest równy 4,4a=1,1·4a. Jest to liczba o 10%
Liczba niewymierna jest to liczba rzeczywista, której nie można wyrazić w postaci a b, b ≠ 0, gdzie a jest liczbą całkowitą i b jest liczbą całkowitą różną od zera. Zbiór liczb niewymiernych oznaczamy symbolem IQ. Dawniej zbiór liczb niewymiernych oznaczano symbolem IW.
Googol to liczba wynosząca 10 do potęgi 100, w formie tradycyjnej przyjmująca postać stu zer poprzedzonych jedynką. Nazwa ta została wymyślona przez dziewięcioletniego Miltona Sirotta, siostrzeńca matematyka Edwarda Kasnera. Badacz opisał twór siostrzeńca i spopularyzował termin w środowisku naukowym.
Liczba niewymierna to liczba rzeczywista, która nie jest wymierna, tzn. nie można jej zapisać jako ułamek w / b, gdzie a i b są dwiema względnymi liczbami całkowitymi (gdzie b nie jest zerem). Liczby niewymierne można równoważnie scharakteryzować jako liczby rzeczywiste, których rozwinięcie dziesiętne nie jest okresowe lub
Dość dobrze opisałem to w pierwszym wniosku – gdyby funkcja miała ramiona skierowane do góry, to wartości dodatnie byłyby przyjmowane np. w plus nieskończoności, a tutaj muszą być przyjmowane w konkretnym przedziale od 0 do 12 :) Poza tym o tym, że parabola ma ramiona skierowane w dół świadczy jeszcze fakt, że przyjmuje ona największą wartość równą 9.
Argument liczby zespolonejdowolna liczba rzeczywista dla której gdzie Zamknij Wartość oczekiwana obliczamy ją przy rozkładzie zmiennej losowej np. jednostkowym czy skokowym, jako sumę iloczynów poszczególnych wartości zmiennej przez odpowiadające prawdopodobieństwa.
631rd. Podstawa programowa Ministerstwa Edukacji do nowej matury (od 2015 roku) zakłada, że uczeń: przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); oblicza wartości wyrażeń arytmetycznych (wymiernych); posługuje się w obliczeniach pierwiastkami dowolnego stopnia i stosuje prawa działań na pierwiastkach; oblicza potęgi o wykładnikach wymiernych i stosuje prawa działań na potęgach o wykładnikach wymiernych; wykorzystuje podstawowe własności potęg (również w zagadnieniach związanych z innymi dziedzinami wiedzy, np. fizyką, chemią, informatyką); wykorzystuje definicję logarytmu i stosuje w obliczeniach wzory na logarytm iloczynu, logarytm ilorazu i logarytm potęgi o wykładniku naturalnym; oblicza błąd bezwzględny i błąd względny przybliżenia; posługuje się pojęciem przedziału liczbowego, zaznacza przedziały na osi liczbowej; wykonuje obliczenia procentowe, oblicza podatki, zysk z lokat (również złożonych na procent składany i na okres krótszy niż rok). W tej części kursu przećwiczymy dokładnie wszystkie powyższe nawigacja do zadania numer: 5 10 15 20 25 30 35 40 45 .Ułamiki, potęgi i pierwiastkiWzory przydatne w tym dziale znajdziesz w tablicach maturalnych na stronie nr 1. Najważniejsze wiadomości: Ułamki zwykłe dodajemy i odejmujemy sprowadzając do wspólnego mianownika, np.: \[\frac{1}{2}+\frac{3}{5}=\frac{5}{10}+\frac{6}{10}=\frac{11}{10}\] Ułamki zwykłe można zamienić na dziesiętne (okresowe) dzieląc na kalkulatorze licznik przez mianownik, np.: \[\frac{21}{45} = 21:45 = 0{,}4666666... = 0{,}4(6)\] Wzory do wykonywania działań na potęgach: Definicja potęgi o wykładniku naturalnym \[a^n=\underbrace{a\cdot a\cdot a\cdot...\cdot a}_{n \text{ razy}}\] Wzory na potęgi o wykładnikach wymiernych \[ a^{-n}=\frac{1}{a^n}\quad (\text{dla }a\ne 0)\\[16pt] a^{\tfrac{1}{n}}=\sqrt[n]{a}\quad (\text{dla }a\ge 0)\\[16pt] a^{\tfrac{k}{n}}=\sqrt[n]{a^k}\quad (\text{dla }a\ge 0)\\[16pt] a^{-\tfrac{k}{n}}=\frac{1}{\sqrt[n]{a^k}}\quad (\text{dla }a\gt 0)\\[16pt] \] Wzory działań na potęgach \[ a^m\cdot a^n=a^{m+n}\\[16pt] \frac{a^m}{a^n}=a^{m-n}\\[16pt] a^n\cdot b^n=(a\cdot b)^n\\[16pt] \frac{a^n}{b^n}=\left (\frac{a}{b}\right )^n\\[16pt] \left(a^m \right)^n=a^{m\cdot n} \] Wzory działań na pierwiastkach \[ \sqrt{a}\cdot \sqrt{b}=\sqrt{a\cdot b}\\[16pt] \frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}} \] Działania na bardziej skomplikowanych pierwiastkach wykonujemy najczęściej zamieniając pierwiastki na potęgi. \[ \sqrt[n]{a}=a^{\tfrac{1}{n}}\\[16pt] \sqrt[n]{a}\cdot \sqrt[m]{a}=a^{\tfrac{1}{n}}\cdot a^{\tfrac{1}{m}}=a^{\tfrac{1}{n}+\tfrac{1}{m}}\\[16pt] \frac{\sqrt[n]{a}}{\sqrt[m]{a}} =\frac{a^{\tfrac{1}{n}}}{a^{\tfrac{1}{m}}} =a^{\tfrac{1}{n}-\tfrac{1}{m}}\\[16pt] \] Wartość wyrażenia \(\frac{\frac{3}{4}-\frac{2}{3}}{\frac{2}{3}-\frac{1}{2}}\) jest równa A.\( 1 \) B.\( \frac{1}{2} \) C.\( \frac{1}{12} \) D.\( \frac{1}{72} \) BW tym nagraniu wideo pokazuję jak wykonywać działania na potęgach o wykładniku wymiernym. Przez pierwsze 8 minut nagrania przypominam również zasady wykonywania działań na potęgach o wykładniku nagrania: 30 \( 3^{30}\cdot 9^{90} \) jest równa: A.\(3^{210} \) B.\(3^{300} \) C.\(9^{120} \) D.\(27^{2700} \) ALiczba \(2^{20}\cdot 4^{40}\) jest równa A.\( 2^{60} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) BIloczyn \(81^2\cdot 9^4\) jest równy A.\( 3^4 \) B.\( 3^0 \) C.\( 3^{16} \) D.\( 3^{14} \) CIloraz \(125^5:5^{11}\) jest równy A. \(5^{-6}\) B. \(5^{16}\) C. \(25^{-6}\) D. \(25^2\) DLiczba \(\frac{7^6\cdot 6^7}{42^6}\) jest równa A.\( 42^{36} \) B.\( 42^7 \) C.\( 6 \) D.\( 1 \) CLiczba \(\frac{4^5\cdot 5^4}{20^4}\) jest równa A.\( 4^4 \) B.\( 20^{16} \) C.\( 20^5 \) D.\( 4 \) DLiczba \(128^{-4}:\left ( \frac{1}{32} \right )^4\) jest równa A.\( 4^{-4} \) B.\( 2^{-4} \) C.\( 2^4 \) D.\( 4^4 \) ALiczba \(\left (\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}} \right )^0\) jest równa A.\( 1 \) B.\( 4 \) C.\( 9 \) D.\( 36 \) ALiczba \( \frac{1}{2}\cdot 2^{2014} \) jest równa A.\(2^{2013} \) B.\(2^{2012} \) C.\(2^{1007} \) D.\(1^{2014} \) ATrzecia część liczby \(3^{150}\) jest równa: A.\( 1^{50} \) B.\( 1^{150} \) C.\( 3^{50} \) D.\( 3^{149} \) DLiczbę \(x=2^2\cdot 16^{-4}\) można zapisać w postaci A.\( x=2^{14} \) B.\( x=2^{-14} \) C.\( x=32^{-2} \) D.\( x=2^{-6} \) BLiczba \( 3^{\frac{8}{3}}\cdot \sqrt[3]{9^2} \) jest równa: A.\(3^3 \) B.\(3^{\frac{32}{9}} \) C.\(3^4 \) D.\(3^5 \) CLiczba \(\sqrt[3]{{(-8)}^{-1}}\cdot {16}^{\frac{3}{4}}\) jest równa A.\( -8 \) B.\( -4 \) C.\( 2 \) D.\( 4 \) BLiczbę \(\sqrt{32}\) można przedstawić w postaci A.\( 8\sqrt{2} \) B.\( 12\sqrt{3} \) C.\( 4\sqrt{8} \) D.\( 4\sqrt{2} \) DLiczba \(7^{\frac{4}{3}}\cdot \sqrt[3]{7^5}\) jest równa A.\( 7^{\frac{4}{5}} \) B.\( 7^3 \) C.\( 7^{\frac{20}{9}} \) D.\( 7^2 \) BLiczba \(\sqrt[3]{(27)^{-1}}\cdot 72^0\) jest równa A.\( \frac{1}{3} \) B.\( -\frac{1}{3} \) C.\( 0 \) D.\( 3 \) AWyrażenie \(\sqrt{1{,}5^2+0{,}8^2}\) jest równe: A.\( 2{,}89 \) B.\( 2{,}33 \) C.\( 1{,}89 \) D.\( 1{,}70 \) DLiczba \(\frac{5^3\cdot 25}{\sqrt{5}}\) jest równa A.\( 5^5\sqrt{5} \) B.\( 5^4\sqrt{5} \) C.\( 5^3\sqrt{5} \) D.\( 5^6\sqrt{5} \) BLiczba \(\sqrt[3]{3}\cdot \sqrt[6]{3}\) jest równa A.\( \sqrt[9]{3} \) B.\( \sqrt[18]{3} \) C.\( \sqrt[18]{6} \) D.\( \sqrt{3} \) DWartość wyrażenia \(5^{100}+5^{100}+5^{100}+5^{100}+5^{100}\) jest równa A.\( 5^{500} \) B.\( 5^{101} \) C.\( 25^{100} \) D.\( 25^{500} \) BWyrażenie \(2\sqrt{50}-4\sqrt{8}\) zapisane w postaci jednej potęgi wynosi A.\( 2^{\frac{3}{2}} \) B.\( 2^{\frac{1}{2}} \) C.\( 2^{-1} \) D.\( 4^{\frac{1}{2}} \) ALiczba \(\frac{\sqrt{50}-\sqrt{18}}{\sqrt{2}}\) jest równa A.\( 2\sqrt{2} \) B.\( 2 \) C.\( 4 \) D.\( \sqrt{10}-\sqrt{6} \) BLiczba \( \left ( \frac{1}{\left (\sqrt[3]{729}+\sqrt[4]{256}+2 \right)^0} \right )^{-2} \) jest równa A.\(\frac{1}{225} \) B.\(\frac{1}{15} \) C.\(1 \) D.\(15 \) CLiczba \(\frac{\sqrt[4]{16}+\sqrt[3]{3\frac{3}{8}}}{\left (\frac{2}{7} \right)^{-1}}\) jest równa A.\( -1 \) B.\( \frac{4}{49} \) C.\( -2\frac{1}{4} \) D.\( 1 \) DLiczba \(\sqrt[3]{3\sqrt{3}}\) jest równa A.\( \sqrt[6]{3} \) B.\( \sqrt[4]{3} \) C.\( \sqrt[3]{3} \) D.\( \sqrt{3} \) DLiczbą odwrotną do liczby \(5\frac{3}{11}-2\frac{1}{11}\cdot \sqrt[3]{-8}\) jest A.\( \frac{11}{70} \) B.\( \frac{11}{104} \) C.\( -\frac{11}{104} \) D.\( -\frac{70}{11} \) BLiczba \(0{,}(70)\) jest równa liczbie A.\( \frac{7}{10} \) B.\( \frac{70}{99} \) C.\( \frac{7}{9} \) D.\( \frac{77}{99} \) BW rozwinięciu dziesiętnym ułamka \(\frac{2}{7}\) na trzydziestym miejscu po przecinku stoi cyfra A.\( 7 \) B.\( 1 \) C.\( 2 \) D.\( 4 \) DLiczbą większą od zera jest liczba A.\( \frac{1}{3}-0{,}(3) \) B.\( -\sqrt{3}+1\frac{7}{9} \) C.\( 4\frac{2}{3}-4\sqrt{3\frac{1}{16}} \) D.\( -2^2 \) BLicznik pewnego ułamka jest równy \(6\). Jeżeli licznik tego ułamka zmniejszymy o \(2\), a mianownik o \(3\), to wartość tego ułamka się nie zmieni. Jaki to ułamek? A.\( \frac{6}{10} \) B.\( \frac{6}{5} \) C.\( \frac{6}{11} \) D.\( \frac{6}{9} \) DJeżeli do licznika i do mianownik nieskracalnego dodatniego ułamka dodamy połowę jego licznika, to otrzymamy \(\frac{4}{7}\), a jeżeli do licznika i do mianownika dodamy \(1\), to otrzymamy \(\frac{1}{2}\). Wyznacz ten ułamek.\(\frac{8}{17}\)Obliczanie wartości wyrażeń arytmetycznychWartości wyrażeń arytmetycznych obliczamy podstawiając wartość liczbową do danego wyrażenia, np.: Wartość wyrażenia \(2x-6\) dla \(x=7\) jest równa: \(2\cdot 7-6=14-6=8\). Wartość wyrażenia \((a-1)(a^2+a+1)\) dla \(a=\frac{3}{4}\) jest równa A.\( -\frac{37}{64} \) B.\( \frac{1}{4} \) C.\( -\frac{1}{4} \) D.\( 1\frac{27}{64} \) AWyrażenie \((1 - 2x)^2 - 3(x + \sqrt{2})(x - \sqrt{2})\) dla \(x = 2\) przyjmuje wartość A.\( 1 \) B.\( 2 \) C.\( 3 \) D.\( -5 \) CWartość liczbowa wyrażenia algebraicznego \((a^2 - 16)(a + 2)\) dla \(a = \sqrt{2}\) wynosi A.\( 56\sqrt{2} \) B.\( 14(\sqrt{2}+2) \) C.\( 56 \) D.\( -14(\sqrt{2}+2) \) DWyrażenie \(\frac{x-1}{x-2}\cdot \frac{x^2-4}{x^2-1}\) dla \(x=4\) ma wartość A.\( 0 \) B.\( 1\frac{1}{5} \) C.\( \frac{3}{2} \) D.\( 6 \) BWartość liczbowa wyrażenia \(x^3y^2 - y^3x^2\) dla \(x = -1\) i \(y = -2\) wynosi A.\( 0 \) B.\( 4 \) C.\( -4 \) D.\( 12 \) BLogarytmy Najważniejsze wzory: \[\log_ab+\log_ac=\log_a(b\cdot c)\] \[\log_ab-\log_ac=\log_a\left(\frac{b}{c}\right)\] \[n\cdot \log_ab=\log_a(b^n)=\log_{a^{\frac{1}{n}}}b\] \[a^{\log_ab}=b\] \[\log_ab=\frac{\log_cb}{\log_ca}\] W tym nagraniu wideo omawiam najważniejsze wiadomości dotyczące logarytmów. Pokazuję najprostszą metodę obliczania logarytmów, omawiam wszystkie najważniejsze wzory związane z logarytmami, dziedzinę logarytmu oraz równania i nierówności nagrania: 67 \( \log_8 16+1 \) jest równa A.\(\log_8 17 \) B.\(\frac{3}{2} \) C.\(\frac{7}{3} \) D.\(3 \) CLiczba \(\log_{\sqrt{2}}(2\sqrt{2})\) jest równa A.\( \frac{3}{2} \) B.\( 2 \) C.\( \frac{5}{2} \) D.\( 3 \) DLiczba \( \log 24 \) jest równa: A.\(2\log 2+\log 20 \) B.\(\log 6+2\log 2 \) C.\(2\log 6-\log 12 \) D.\(\log 30-\log 6 \) BLiczba \(2\log 5 +\log 4\) jest równa A.\( 2 \) B.\( 2\log 20 \) C.\( \log 40 \) D.\( 10 \) ALiczba \(2\log_5 10 - \log_5 4\) jest równa A.\( 2 \) B.\( \log_5 96 \) C.\( 2\log_5 6 \) D.\( 5 \) AWartość wyrażenia \(\log_50{,}04-\frac{1}{2}\log_{25}1\) jest równa A.\( -3 \) B.\( -2\frac{1}{4} \) C.\( -2 \) D.\( 0 \) CWartość wyrażenia \(\log_3\frac{3}{2}+\log_3\frac{2}{9}\) jest równa A.\( -1 \) B.\( -2 \) C.\( \log_3\frac{5}{11} \) D.\( \log_3\frac{31}{18} \) ALiczba \(\frac{\log_3729}{\log_636}\) jest równa A.\( \log_6693 \) B.\( 3 \) C.\( \log_{\frac{1}{2}}\frac{81}{4} \) D.\( 4 \) BLiczba \( \left ( \log_{\sqrt{3}}3\sqrt{3} \right )^4 \) jest równa A.\(12 \) B.\(6 \) C.\(9 \) D.\(81 \) DLiczba \( c=\log_{3}2 \). Wtedy A.\(c^3=2 \) B.\(3^c=2 \) C.\(3^2=c \) D.\(c^2=3 \) B
Liczby rzeczywiste ujemne Czy liczby ujemne to liczby rzeczywiste Zbiór liczb rzeczywistych symbol Liczby rzeczywiste przykłady Tak, zero jest liczbą rzeczywistą. Należy przy tym także do zbioru liczb wymiernych, całkowitych i naturalnych (w zależności o przyjetej umowy). Czy w zbiorze liczb rzeczywistych istnieje taka liczba, która nie jest ani liczbą wymierną, ani liczbą niewymierną? Wyświetl całą odpowiedź na pytanie „Czy 0 jest liczbą rzeczywistą”… Liczby rzeczywiste ujemne Liczby ujemne, jak sama nazwa wskazuje, to wszystkie liczby rzeczywiste o znaku ujemnym, czyli mniejsze od 0 ( 0 nie ma znaku). Zbiór liczb ujemnych oznaczamy symbolem R−. Czy liczby ujemne to liczby rzeczywiste Liczby ujemne, jak sama nazwa wskazuje, to wszystkie liczby rzeczywiste o znaku ujemnym, czyli mniejsze od 0 ( 0 nie ma znaku). Zbiór liczb ujemnych oznaczamy symbolem R−. Zbiór liczb rzeczywistych symbol Zbiór liczb rzeczywistych, to zbiór wszystkich liczb – wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem mathbb{R} . Liczby rzeczywiste przykłady Przykładem liczby rzeczywistej jest dowolna liczba wymierna lub niewymierna. Są to więc liczby: 0, 1, 12347593, -4564, 1/2, π, √2, √5, 1-2√2, podstawa logarytmu naturalnego i wiele innych liczb. Takich liczb jest nieskończenie wiele.
Zbiór liczb rzeczywistych, to zbiór wszystkich liczb - wymiernych i niewymiernych. Zbiór liczb rzeczywistych oznaczamy symbolem \(\mathbb{R} \). Liczbami rzeczywistymi są np.: \[0,\ 1,\ -3,\ \frac{5}{6},\ \sqrt{2},\ \pi \]
Co w tym rozdziale ?Liczby rzeczywiste – co to takiego ?Liczby rzeczywiste – przykładyLiczby naturalneLiczby całkowiteLiczby wymierneLiczby niewymierneLiczby parzysteLiczby nieparzysteLiczby przeciwneLiczby odwrotneLiczby pierwszeLiczby złożoneLiczba piNotacja wykładniczaUłamkiProcentyJakim procentem jednej liczby jest druga liczbaUstalenie liczby na podstawie jej procentuProcent składanyPotęgiPierwiastkiNWWNWDUsuwanie niewymierności z mianownikaLogarytmyWartość bezwzględnaRównanie z wartością bezwzględnąNierówności z wartością bezwzględnąZbioryOś liczbowaJak określić współrzędne punktów A,B,C,D,EPodsumowanie Liczby rzeczywiste – co to takiego ? Liczby rzeczywiste jest to zbiór, który składa się z sumy dwóch zbiorów: zbioru liczb wymiernych oraz zbioru liczb rzeczywiste Liczby rzeczywiste – przykłady Zbiór liczb rzeczywistych jest największym zbiorem występującym w matematyce, dlatego też do tego zbioru należy każda liczba np:1,5,9,\frac{5}{7},π, Ogólnie takich liczb jest nieskończenie wiele. Spełniają aksjomat ciągłości, to znaczy, że nie występują luki pomiędzy liczbami na osi liczbowej. Liczby naturalne Liczby naturalne to liczby całkowite, dodatnie:1,2,3,4,5,6,7,8,9,10,11,12,... Zbiór liczb naturalnych oznaczamy literą N. Możemy więc zapisać:N=\{1,2,3,4,5,6,7,8,9,10,11,12,...\} Liczby całkowite Zbiór liczb całkowitych jest to zbiór liczb naturalnych jak i zbiór liczb przeciwnych do nich, wliczamy tu również liczbę zero. Zatem można zapisać, że liczby całkowite są to:...,−9,−8,−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,... Zbiór liczb całkowitych oznacza się symbolem = \{...,−9,−8,−7,−6,−5,−4,−3,−2,−1,0,1,2,3,4,5,6,7,8,9,...\} Można wyróżnić zbiór liczb całkowitych dodatnich jak i ujemnych: Liczby wymierne Liczby wymierne to takie liczby, które można zapisać w postaci ułamka zwykłego:\frac{n}{m} n oraz m są liczbami całkowitymi, należy pamiętać że m musi być różne od 0 (m≠0) Zbiór liczb wymiernych oznaczamy symbolem Q. Liczby niewymierne Liczby niewymierne to takie liczby, które nie można zapisać za pomocą ułamka zwykłego. Liczby te tworzą wraz z liczbami wymiernymi zbiór liczb rzeczywistych R. Przykłady liczb niewymiernych:\sqrt{3}, \sqrt{5}, 3\sqrt{3}, π Liczby parzyste Liczby parzyste to takie liczby całkowite, które dają się podzielić przez dwa bez reszty. Wzór na liczbę parzystą ma postać:2k dla k∈C Przykładami liczb parzystych są:...,-42,−2,0,6,10,18,48,100,180,... Liczby nieparzyste Liczby nieparzyste, to takie liczby całkowite, które nie dają się podzielić przez dwa bez reszty. Resztą z dzielenia jest jeden. Ogólny wzór na każdą liczbę parzystą jest więc następujący:2k+1 dla k∈C Co ciekawe suma dwóch liczba nieparzystych będzie liczba parzystą, natomiast iloczyn dwóch liczb nieparzystych będzie liczbą nieparzystą. Przykłady liczb nieparzystych:...,−13,−1,1,9,17,33,101,... Liczby przeciwne Liczby przeciwne, to dwie takie liczby, których suma wynosi zero. Najprościej mówiąc jedna liczba jest do drugiej przeciwna, jeśli ma taką samą wartość, lecz przeciwny znak. Przykłady liczb przeciwnych:Liczba 1 jest przeciwna do −1, gdyż 1+(−1)=0Liczba \frac{1}{3} jest przeciwna do -\frac{1}{3}, gdyż \frac{1}{3}+(-\frac{1}{3})=0Liczba −π jest przeciwna do π, gdyż −π+π=0 Liczby odwrotne Liczba odwrotna do danej liczby a, to taka liczna b, że a∗b=1. Jeszcze prościej mówiąc: Liczba odwrotna do liczby a, to liczba \frac{1}{a}, gdyż a∗\frac{1}{a}=1. Przykłady:Liczba odwrotna do liczby 3, to \frac{1}{3}, gdyż 3∗\frac{1}{3}=1Liczba odwrotna do liczby \frac{7}{8}, to \frac{8}{7}, gdyż \frac{7}{8}∗\frac{8}{7}=1Liczba odwrotna do liczby \sqrt{3}, to \frac{1}{\sqrt{3}}, gdyż \sqrt{3}∗\frac{1}{\sqrt{3}}=1 Liczby pierwsze Liczby pierwsze to liczby naturalne większe od jeden, które dzielą się tylko przez jeden i samą siebie. Zbiór liczb pierwszych w przedziale od 1 do 100 jest następujący:x∈\{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97\} Liczby złożone Liczby złożone to liczby naturalne większe od jeden, które mają więcej niż dwa dzielniki. W związku z tym każda liczba większa od jeden nie będąca liczbą pierwszą jest liczbą złożoną. Przykłady liczb złożonych:4,6,9,10,12,14,15,16,18,20,21,22,24,25,26,... dlatego, że:4=2∗26=3∗29=3∗310=5∗212=6∗2=3∗2∗2 Liczba pi Liczba π, to liczba wyrażająca stosunek długości okręgu do jego średnicy. Liczba π w przybliżeniu jest równa:π≈3,1415926536.... Liczba π jest liczbą niewymierną i przestępną. Notacja wykładnicza Aby zapisać liczbę w notacji wykładniczej musimy skorzystać ze wzoru:a⋅10^n gdzie: a – jest to liczba rzeczywista z przedziału 0) Wzory działań na potęgacha^m⋅a^n=a^{m+n} \frac{a^m}{a^n}=a^{m−n} a^n⋅b^n=(a⋅b)^n \frac{a^n}{b^n}=(\frac{a}{b})^n (a^m)^n=a^{m⋅n} Pierwiastki Pierwiastkowanie liczb jest to działanie arytmetyczne odwrotne do potęgowania. Pierwiastek arytmetyczny stopnia n z liczby nieujemnej a, to taka liczba nieujemna b, która spełnia następującą równość b^n=a. Pierwiastek zapisujemy symbolem \sqrt[n]{a}.\sqrt[n]{a}=b⇔b^n=a gdzie: a – liczba pierwiastkowana, n – stopień pierwiastka, b – pierwiastek n-go stopnia z liczby a – wynik pierwiastkowania. Wzory działań na pierwiastkach\sqrt{a}*\sqrt{b} = \sqrt{a*b}\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}\sqrt[n]{a}=a^{\frac{1}{n}}\sqrt{a^2} = |a| NWW Najmniejsza wspólna wielokrotność (NWW) jest związana tylko z liczbami naturalnymi. Jest to taka najmniejsza liczba, która dzieli się bez reszty przez te dowolne liczby naturalne. Najmniejsza wspólna wielokrotność najczęściej używana jest w znajdowaniu wspólnego mianownika. Przykład: Mając liczby 3 i 4 można wypisać ich wielokrotności w następujący sposób: wielokrotności liczby 3 – 3;6;9;12;15;18;21;24;27;30;33;36;⋯, wielokrotności liczby 4 – 4;8;12;16;20;24;28;32;36;⋯, Najmniejszą wspólną wielokrotnością jest najmniejsza z zaznaczonych liczb czyli 12. NWW(3;4)=12 Jak obliczyć najmniejsza wspólna wielokrotność? Obie liczby należy rozłożyć na czynniki pierwsze, następnie zakreślić czynniki, które się powtarzają w obu rozkładach, potem bierzemy pierwszą liczbę i czynniki niezakreślone z drugiego rozkładu i mnożymy przez siebie. 12 | (2) 6 | 2 3 | (3) 1 | 30 |(2) 15 |(3) 5 | 5 1 | NWW(12;30) = 12 * 5 = 60 lub NWW(12;30) = 30 * 2 = 60 NWD Największy wspólny dzielnik (NWD) – jest to liczba naturalna, przez którą można podzielić dowolną parę liczb całkowitych, tak aby z dzielenia nie została reszta. Jak znajduje się największy wspólny dzielnik? Mając dwie liczby, rozkładamy je na czynniki pierwsze, potem wybieramy te, które się powtarzają w obu liczbach i mnożymy je przez siebie. Przykład: NWD(54; 36): 54 | (2) 27 | (3) 9 | (3) 3 | 3 1 | 36 | (2) 18 | 2 9 | (3) 3 | (3) 1 | NWD(54; 36) = 2 * 3 * 3= 18 Usuwanie niewymierności z mianownika Usuwanie niewymierności z mianownika – jest to proces polegający na usunięciu pierwiastków z mianownika ułamka. Najczęściej wykonujemy to mnożąc licznik i mianownik ułamka przez tę samą liczbę. Najlepszy będzie przykład:\frac{2}{\sqrt{3}} = \frac{2*\sqrt{3}}{\sqrt{3}*\sqrt{3}} = \frac{2\sqrt{3}}{3} Logarytmy Logarytm – przy podstawie a z liczby b oznacza taką liczbę c, będącą potęgą, do której podstawa logarytmu a musi być podniesiona, aby dać liczbę logarytmowaną b, czyli:log_ab=c⇔a^c=b Logarytm dziesiętny – to taki logarytm, którego podstawą jest liczba 10. W zapisie logarytmu dziesiętnego pomija się podstawę logarytmu, zapisując log_x lub lg_x, co jest równoznaczne z log_{10} Logarytm naturalny – to taki logarytm, którego podstawą jest liczba e równa w przybliżeniu 2,718281828. Logarytm naturalny zapisujemy jako lnx, co jest równoznaczne z wzory: Jeżeli a>0,a≠1,b>0 oraz c>0, to:log_ab+log_ac=log_a(b⋅c)log_ab−log_ac=log_a(\frac{b}{c})n⋅log_ab=log_a(b^n)=log_{a^{\frac{1}{n}}}ba^{log_ab}=blog_ab=\frac{log_cb}{log_ca} Wartość bezwzględna Wartością bezwzględną – dowolnej liczby rzeczywistej x jest: – ta sama liczba rzeczywista x, gdy x≥0 – liczba −x (przeciwna do x), gdy x. W obu przypadkach domykamy nawiasy ze względu na znak mniejszy-równy (≤) oraz więszky-równy(≥). Zbiory Zbiór – to pewna całość złożona z pewnej ilości obiektów, tymi obiektami mogą być liczby całkowite, książki na regale, buty w szafce i wiele innych. Zbiory oznaczamy zawsze wielkimi literami alfabetu. Każdy zbiór składa się z elementów, elementy oznaczamy małymi literami. Wyjątkiem jest zbiór pusty, który nie zawiera żadnego elementu. Przykłady zbiorów:Suma zbiorów – A∪BSuma zbiorówIloczyn zbiorów – A∩BIloczyn zbiorówRóżnica zbiorów – A\BRóżnica zbiorów A\BRóżnica zbiorów – B\ARóżnica zbiorów B\AZbiór – AZbiór AZbiór – BZbiór BZbiór pusty – A∩B = ØZbiór pusty Własności zbiorów: – przemienność sumy zbiorów A ∪ B = B ∪ A – łączność sumy zbiorów (A ∪ B) ∪ C = A ∪ (B ∪ C) – rozdzielność sumy względem iloczynu zbiorów A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) – przemienność iloczynu zbiorów A ∩ B = B ∩ A – rozdzielność iloczynu względem sumy zbiorów A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) – łączność iloczynu zbiorów (A ∩ B) ∩ C = A ∩ (B ∩ C) – prawa de Morgana dla zbiorów (A ∪ B)' = A' ∩ B' oraz (A ∩ B)' = A' ∪ B' Oś liczbowa Prostą, na której obrano punkt zerowy, jednostkowy (odległość między punktem zerowym a jednostkowym jest równa 1) oraz jeden ze zwrotów tej prostej uznano za dodatni nazywamy osią liczbową. Każdej liczbie rzeczywistej można przyporządkować dokładnie jeden punkt na osi liczbowej. Liczbę x przyporządkowaną punktowi P na osi liczbowej nazywamy współrzędną punktu P na tej rzeczywiste – wykres Jak określić współrzędne punktów A,B,C,D,E Ponieważ punkt E jest oddalony od punktu zerowego o dwie i pół jednostki w kierunku osi liczbowej, jego współrzędna wynosi 2,5. Punkt C jest oddalony o jedną jednostkę (współrzędna zatem jest równa 1). Punkt B (podobnie jak punkt C) jest również oddalony od punktu zerowego o jedną jednostkę, ale w stronę przeciwną niż wynosi zwrot osi liczbowej, współrzędną punktu B jest zatem liczba -1. Współrzędna punktu A jest liczba -2, a punktu D liczba 0,5. Nasuwa się pytanie czy zero jest liczbą rzeczywistą? Tak, zero jest liczbą rzeczywistą. Należy przy tym także do zbioru liczb wymiernych, całkowitych i naturalnych (w zależności od przyjętej umowy). Wykonalność działań w zbiorze liczb rzeczywistych W zbiorze liczb rzeczywistych wykonalne są wszystkie podstawowe działania: dodawanie, odejmowanie, mnożenie i dzielenie, za wyjątkiem dzielenia przez zero. Podsumowanie Jest to największy zbiór występujący w matematyce, można go znaleźć w każdym dziale matematyki jaki poznajemy w szkole. Umiejętność wykorzystywania znajomości rozróżniania zbiorów przydaje się w dalszych etapach kształcenia. W ramach przyswojenia nowej wiedzy gorąco zapraszam do zapoznania się z zadaniami również:Zadania zamknięteĆwiczenia krótkiej odpowiedziZadania otwarte
nierówność lorak: Liczba r jest najmniejszą liczbą rzeczywistą spełniającą nierówność (to jest ułamek w wartości bezwzględnej) |x−√2| |−−−−| ≤ √2 |1−√2| Zakoduj trzy pierwsze cyfry po przecinku rozwinięcia dziesiętnego liczby 4 Jak się to robi? 26 sty 18:01 panpawel: 1) usuń wartości bezwględne 26 sty 18:16 panpawel: bezwzględne 26 sty 18:17 pigor: ..., np. tak : |r−√2| ≤ √2 ⇔ |r−√2| ≤ √2|1−√2| ⇔ |r−√2| ≤ √2(−1+√2) ⇔|1−√2| ⇔ |r−√2| ≤ 2−√2 ⇔ −2+√2 ≤ r−√2 ≤ 2−√2 /+√2 ⇔ ⇔ 2√2−1 ≤ r ≤ 2 ⇒ 2√2−1 − szukana najmniejsza liczba R. −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 4= 4,000... , więc 3−y pierwsze cyfry to 3 zera, o to chodzi ... 26 sty 18:31
liczba r jest najmniejsza liczba rzeczywista